Motion PlanningΒΆ
- class jacobi.TrajectoryΒΆ
Bases:
pybind11_object
A robotβs trajectory as a list of positions, velocities and accelerations at specific times.
The Trajectory class represents a sequence of kinematic states of a robot over a specified duration. It maintains lists of positions, velocities, and accelerations at particular time stamps.
- __init__(self: Trajectory, degrees_of_freedom: int) None ΒΆ
Create an empty trajectory with the given degrees of freedom
- Parameter
dofs
: The degrees of freedom of the joint space.
- Parameter
- append(self: Trajectory, other: Trajectory) None ΒΆ
Append another trajectory to the current one.
- Parameter
other
: The trajectory to append. Ignores the first time step if the trajectory starts at zero and the trajectory to append to is already non-empty.
- Parameter
- as_table(self: Trajectory) str ΒΆ
To pretty print the trajectory as a table of positions
- at_time(self: Trajectory, time: float) tuple ΒΆ
- back(self: Trajectory) jacobi.State ΒΆ
Access the last state at t=duration of the trajectory
- Returns:
The last state at t=duration of the trajectory.
- filter_path(self: Trajectory, max_distance: list[float]) list[list[float]] ΒΆ
Filter a path of sparse waypoints from the trajectory
The path has a maximum distance per degree of freedom between the linear interpolation of the sparse waypoints and the original trajectory.
- Parameter
max_distance
: The maximum allowable distance between joint positions.
- Returns:
std::vector<Config> A list of sparse waypoints filtered from the trajectory.
- Parameter
- static from_json(json: str) Trajectory ΒΆ
Loads a trajectory from a json string.
- static from_json_file(file: os.PathLike) Trajectory ΒΆ
Loads a trajectory from a *.json file.
- Parameter
file
: The path to the *.json file.
- Returns:
Trajectory The loaded trajectory.
- Parameter
- front(self: Trajectory) jacobi.State ΒΆ
Access the first state at t=0 of the trajectory
- Returns:
The first state at t=0 of the trajectory.
- get_step_closest_to(self: Trajectory, position: list[float]) int ΒΆ
Get step at which the trajectory is closest (in terms of the L2 norm in joint space) to the reference position
- Returns:
size_t The step index of the closest position.
- reverse(self: Trajectory) Trajectory ΒΆ
Reverse the trajectoryβs start and goal
- Returns:
Trajectory A new trajectory with the start and end points reversed.
- scale(self: Trajectory, speed: float, keep_delta_time: bool = True) Trajectory ΒΆ
Temporally scale the trajectory by a given speed factor.
- Parameter
speed
: Factor to scale the trajectory speed (greater than 1 speeds up, less than 1 slows down).
- Parameter
keep_delta_time
: If true (default), maintains the original time intervals between trajectory points.
- Returns:
Trajectory A new scaled Trajectory object.
- Parameter
- slice(self: Trajectory, start: int, steps: int) Trajectory ΒΆ
Slice a trajectory starting from step start for a length of steps.
- Parameter
start
: The starting index of the slice.
- Parameter
steps
: The number of steps to include in the slice.
- Returns:
Trajectory A new trajectory containing the specified slice of the original.
- Parameter
- to_json(self: Trajectory) str ΒΆ
Serializes a trajectory to a json string.
- to_json_file(self: Trajectory, file: os.PathLike) None ΒΆ
Saves a trajectory to a *.json file.
- Parameter
file
: The path to the *.json file.
- Parameter
- update_first_position(self: Trajectory, joint_position: list[float]) None ΒΆ
Update the first position of the trajectory
- Parameter
joint_position
: The new position to set at the start of the trajectory.
- Parameter
- property accelerationsΒΆ
The joint accelerations along the trajectory.
- property durationΒΆ
The total duration in [s]
- property idΒΆ
Field for identifying trajectories (for the user)
- property max_accelerationΒΆ
Get the maximum acceleration along the trajectory for each degree of freedom individually
- Returns:
Config The maximum acceleration value for each degree of freedom across the trajectory.
- property max_positionΒΆ
Get the maximum position along the trajectory for each degree of freedom individually
- Returns:
Config The maximum position value for each degree of freedom across the trajectory.
- property max_velocityΒΆ
Get the maximum velocity along the trajectory for each degree of freedom individually
- Returns:
Config The maximum velocity value for each degree of freedom across the trajectory.
- property min_accelerationΒΆ
Get the minimum acceleration along the trajectory for each degree of freedom individually
- Returns:
Config The minimum acceleration value for each degree of freedom across the trajectory.
- property min_positionΒΆ
Get the minimum position along the trajectory for each degree of freedom individually
- Returns:
Config The minimum position value for each degree of freedom across the trajectory.
- property min_velocityΒΆ
Get the minimum velocity along the trajectory for each degree of freedom individually
- Returns:
Config The minimum velocity value for each degree of freedom across the trajectory.
- property motionΒΆ
Name of the motion this trajectory was planned for
- property positionsΒΆ
The joint positions along the trajectory.
- property timesΒΆ
The exact time stamps for the position, velocity, and acceleration values. The times will usually be sampled at the delta_time distance of the Planner class, but might deviate at the final step.
- property velocitiesΒΆ
The joint velocities along the trajectory.
- class jacobi.DynamicRobotTrajectoryΒΆ
Bases:
pybind11_object
A trajectory executed by a robot, in particular used for dynamic collision checking.
- __init__(self: DynamicRobotTrajectory, trajectory: Trajectory, robot: Robot, time_offset: float = 0.0) None ΒΆ
- property robotΒΆ
The robot that executes the trajectory
- property time_offsetΒΆ
A time offset when the robot starts executing the trajectory relative to the planning time
- property trajectoryΒΆ
The execute trajectory
- class jacobi.PlannerΒΆ
Bases:
pybind11_object
- __init__(*args, **kwargs)ΒΆ
Overloaded function.
__init__(self: jacobi.Planner, environment: jacobi.Environment, delta_time: float) -> None
Create a planner with an environment and a specific delta time parameter.
- Parameter
environment
: The environment to plan the robot motions in.
- Parameter
delta_time
: The time step for sampling the trajectories in [s].
__init__(self: jacobi.Planner, robot: jacobi.Robot, delta_time: float) -> None
Create a planner with the robot inside an empty environment and a specific delta time parameter.
- Parameter
robot
: The robot to plan the motions for.
- Parameter
delta_time
: The time step for sampling the trajectories in [s].
__init__(self: jacobi.Planner, environment: jacobi.Environment) -> None
Create a planner with an environment.
- Parameter
environment
: The environment to plan the robot motions in.
__init__(self: jacobi.Planner, robot: jacobi.Robot) -> None
Create a planner with the robot inside an empty environment.
- Parameter
robot
: The robot to plan the motions for.
- add_motion(self: Planner, motion: BimanualMotion | LinearMotion | LowLevelMotion | Motion | PathFollowingMotion) None ΒΆ
Add (or update when name already exists) a motion to the planner
- Parameter
motion
: The motion to add, can be of any type.
- Parameter
- get_motion(self: Planner, name: str) BimanualMotion | LinearMotion | LowLevelMotion | Motion | PathFollowingMotion ΒΆ
Get a motion by its name
- Parameter
name
: The name of the motion to retrieve.
- Returns:
The AnyMotion object associated with the given name.
- Parameter
- static load_from_project_file(file: os.PathLike) Planner ΒΆ
Loads a planner from a project file.
- Parameter
file
: The path to the project file.
- Returns:
A shared pointer to the loaded Planner object.
- Parameter
- static load_from_studio(name: str) Planner ΒΆ
Loads a planner from a Studio project. Make sure to have the access token set as an environment variable.
- Parameter
name
: The name of the Studio project.
- Returns:
A shared pointer to the loaded Planner object.
- Parameter
- load_motion_plan(self: Planner, file: os.PathLike) None ΒΆ
Load a *.jacobi-plan motion plan for accelerating the planning calculation.
- Parameter
file
: The path to the *.jacobi-plan file to load.
- Parameter
- plan(*args, **kwargs)ΒΆ
Overloaded function.
plan(self: jacobi.Planner, start: Union[list[float], jacobi.Waypoint, jacobi.CartesianWaypoint, jacobi.MultiRobotPoint, jacobi.Region, jacobi.CartesianRegion], goal: Union[list[float], jacobi.Waypoint, jacobi.CartesianWaypoint, jacobi.MultiRobotPoint, jacobi.Region, jacobi.CartesianRegion]) -> Expected[jacobi.Trajectory, jacobi.PlanningError]
Plans a time-optimized, collision-free, and jerk-limited motion from start to goal.
- Parameter
start
: The start point of the motion.
- Parameter
goal
: The goal point of the motion.
- Returns:
The computed trajectory or std::nullopt if the planning failed.
plan(self: jacobi.Planner, name: str, start: Optional[Union[list[float], jacobi.Waypoint, jacobi.CartesianWaypoint, jacobi.MultiRobotPoint]] = None, goal: Optional[Union[list[float], jacobi.Waypoint, jacobi.CartesianWaypoint, jacobi.MultiRobotPoint]] = None) -> Expected[jacobi.Trajectory, jacobi.PlanningError]
Plans a time-optimized, collision-free, and jerk-limited motion given the motion name. In case the motion was specified by a start or goal region, the respective exact start or goal positions needs to be passed.
- Parameter
name
: The name of the motion to plan.
- Parameter
start
: The exact start position of the motion.
- Parameter
goal
: The exact goal position of the motion.
- Returns:
The computed trajectory or std::nullopt if the planning failed.
plan(self: jacobi.Planner, motion: jacobi.Motion, start: Optional[Union[list[float], jacobi.Waypoint, jacobi.CartesianWaypoint, jacobi.MultiRobotPoint]] = None, goal: Optional[Union[list[float], jacobi.Waypoint, jacobi.CartesianWaypoint, jacobi.MultiRobotPoint]] = None) -> Expected[jacobi.Trajectory, jacobi.PlanningError]
Plans a collision-free point-to-point motion.
- Parameter
motion
: The motion to plan.
- Parameter
start
: The exact start position of the motion.
- Parameter
goal
: The exact goal position of the motion.
- Returns:
The computed trajectory or std::nullopt if the planning failed.
plan(self: jacobi.Planner, motion: jacobi.LinearMotion) -> Expected[jacobi.Trajectory, jacobi.PlanningError]
Plans a linear motion.
- Parameter
motion
: The linear motion to plan.
- Returns:
The computed trajectory or std::nullopt if the planning failed.
plan(self: jacobi.Planner, motion: jacobi.LowLevelMotion) -> Expected[jacobi.Trajectory, jacobi.PlanningError]
Plans a low-level motion.
- Parameter
motion
: The low-level motion to plan.
- Returns:
The computed trajectory or std::nullopt if the planning failed.
plan(self: jacobi.Planner, motion: jacobi.PathFollowingMotion) -> Expected[jacobi.Trajectory, jacobi.PlanningError]
Plans a path-following motion.
- Parameter
motion
: The path-following motion to plan.
- Returns:
The computed trajectory or std::nullopt if the planning failed.
plan(self: jacobi.Planner, motion: jacobi.BimanualMotion) -> Expected[jacobi.Trajectory, jacobi.PlanningError]
Plans a bimanual motion.
- Parameter
motion
: The bimanual motion to plan.
- Returns:
The computed trajectory or std::nullopt if the planning failed.
plan(self: jacobi.Planner, motions: list[Union[jacobi.BimanualMotion, jacobi.LinearMotion, jacobi.LowLevelMotion, jacobi.Motion, jacobi.PathFollowingMotion]]) -> Expected[list[jacobi.Trajectory], jacobi.PlanningError]
Plans a feasible sequence of motions.
- Parameter
motions
: The sequence of motions to plan.
- Returns:
The computed sequence of trajectories or std::nullopt if the planning failed.
- plan_path(*args, **kwargs)ΒΆ
Overloaded function.
plan_path(self: jacobi.Planner, motion: jacobi.Motion, start: Optional[Union[list[float], jacobi.Waypoint, jacobi.CartesianWaypoint, jacobi.MultiRobotPoint]] = None, goal: Optional[Union[list[float], jacobi.Waypoint, jacobi.CartesianWaypoint, jacobi.MultiRobotPoint]] = None) -> Expected[jacobi.PathCommand, jacobi.PlanningError]
plan_path(self: jacobi.Planner, motion: jacobi.BimanualMotion) -> Expected[jacobi.PathCommand, jacobi.PlanningError]
- set_seed(self: Planner, seed: int | None) None ΒΆ
Set the seed of the plannerβs random number generator
- Parameter
seed
: The seed to set. If no seed is provided, the generator will be seeded with a random value.
- Parameter
- transfer_trajectory(self: Planner, trajectory: Trajectory, robot_from: RobotArm, robot_to: RobotArm, offset: Frame = Frame()) Expected[Trajectory, jacobi.PlanningError] ΒΆ
Transfers a trajectory from one robot to another.
Calculate a trajectory for another robot that follows the TCP of the original robot given the trajectory. This method does not check for constraints of the new robot.
- Parameter
trajectory
: The trajectory to follow.
- Parameter
robot_from
: The original robot to transfer from.
- Parameter
robot_to
: The new robot to transfer to.
- Parameter
offset
: Optional offset between the from and to robotβs TCP.
- Returns:
The transferred trajectory or std::nullopt if the planning failed.
- Parameter
- property delta_timeΒΆ
The time step for sampling the trajectories in [s]. Usually, this should correspond to the control rate of the robot.
- property dynamic_robot_trajectoriesΒΆ
Pairs of robot-trajectories that are used for dynamic collision checking (e.g. of moving robots)
- property environmentΒΆ
The current environment to plan robot motions in
- property initial_perturbation_scaleΒΆ
Initial perturbation for the trajectory optimization
- property last_calculation_durationΒΆ
The calculation duration of the last full trajectory computation
- property max_break_stepsΒΆ
Max number of steps without improvement before early stopping
- property max_calculation_durationΒΆ
The maximum compute budget (that wonβt be exceeded)
- property max_optimization_stepsΒΆ
Maximum number of optimization steps
- property meaningful_loss_improvementΒΆ
A meaningful relative improvement to avoid stopping
- property min_calculation_durationΒΆ
The minimum compute budget (that the planner can use regardless)
- property perturbation_change_stepsΒΆ
Steps without improvement after which the perturbation scale is adapted
- property perturbation_scale_changeΒΆ
Change of the perturbation if no improvement could be found recently
- property pre_eps_collisionΒΆ
Resolution of the collision checking in the pre-planning stage [rad]
- property pre_eps_steeringΒΆ
Steering epsilon in the pre-planning stage [rad]
- property pre_max_stepsΒΆ
Maximum number of steps in the pre-planning stage before a solution is not found
- property pre_optimization_stepsΒΆ
Number of samples for optimization after finding a solution in the pre-plannning stage