Bin Picking with Vision¶
Vision-guided robotic bin picking is an advanced automation technology that enables robots to autonomously locate, identify, and retrieve randomly oriented objects from unstructured containers or bins. By integrating sophisticated computer vision systems with robotic manipulation, these solutions address the challenge of handling cluttered, densely packed, and unpredictably positioned items in manufacturing, logistics, and warehousing environments. Cameras allow robots to perceive object geometries, calculate grasping points, and plan precise pick trajectories, significantly reducing manual labor and increasing throughput. In this tutorial, we introduce a vision-guided bin picking system using Jacobi motion planner with live visual data.
Video
Application Code
1import math
2from pathlib import Path
3import numpy as np
4import cv2
5from PIL import Image
6
7from jacobi import Obstacle, Motion, Frame, Planner, Studio, PointCloud, CartesianWaypoint
8from jacobi_vision.drivers import SimulatedCameraDriver
9from jacobi_vision import ImageType, ColorImage
10
11
12class VisionBinPicking:
13 def __init__(self, project_path: Path):
14 # Load the planner and get references to the robot and camera
15 self.planner = Planner.load_from_project_file(project_path)
16 self.robot = self.planner.environment.get_robot()
17 self.camera = self.planner.environment.get_camera()
18 self.camera_driver = SimulatedCameraDriver(self.camera, image_type=ImageType.RGBD)
19 self.studio = Studio()
20 self.studio.reset()
21
22 # Prepare obstacles for simulated picking
23 self.object_for_arm = self.planner.environment.get_obstacle('deodorant_arm')
24 self.object_for_carving = self.planner.environment.get_obstacle('deodorant_scaled')
25 self.planner.environment.remove_obstacle(self.object_for_carving)
26 self.point_cloud_obs = None
27
28 # Remove all "deodorant" obstacles from the environment - we will rely on vision for collision avoidance
29 self.obstacles = self.planner.environment.get_obstacles()
30 self.obstacles = [o for o in self.obstacles if 'deodorant' in o.name]
31 for o in self.obstacles:
32 self.planner.environment.remove_obstacle(o)
33
34 # Get references to the boxes we need to pack objects into
35 self.boxes_to_pack = [self.planner.environment.get_obstacle(f'box_to_pack_{i}') for i in range(4)]
36
37 # Initialize dimensions and configurations
38 self._initialize_dims()
39
40 # Move robot to home configuration at the start
41 self.go_home()
42
43 def _initialize_dims(self):
44 # Reference joint configurations for picking and placing
45 self.reference_config_pick = [0.0, -1.571, 1.571, -1.571, -1.571, 0.0]
46 self.reference_config_place = [-1.571, -1.571, 1.571, -1.571, -1.571, 0.0]
47
48 # Adjust rotations for placement orientation
49 self.place_rot_adjustment = Frame(a=math.pi, b=0, c=math.pi / 2)
50
51 # Dimensions for the target box and objects
52 self.box_to_pack_y = 0.3119882 # [m]
53 self.object_width = 0.066675 # [m]
54 self.object_height = 0.031496 # [m]
55
56 # Calculate spacing for placing multiple objects in a row
57 self.packing_clearance = (self.box_to_pack_y - (4 * self.object_width)) / 5.0
58
59 def get_place_locations(self, box: Obstacle, slot: int):
60 # Compute a target Frame for placing the object in the box at a given slot
61 place_origin = box.origin * Frame(y=-self.box_to_pack_y / 2) * Frame(z=self.object_height)
62 return place_origin * Frame(y=(slot + 1) * self.packing_clearance + (slot + 0.50) * self.object_width)
63
64 def take_snapshot(self):
65 # Capture an RGB-D image from the camera
66 image = self.camera_driver.get_image()
67
68 # Convert to a point cloud and filter out distant points
69 points = image.to_point_cloud().tolist()
70 points = [(p[0], p[1], p[2] - 0.002) for p in points if (p[0] < 0.3 and 0.8 < p[2] < 1.5)]
71 points = points[::2] # Downsample points for efficiency
72
73 # Create a point cloud obstacle in the environment
74 point_cloud = PointCloud(points, resolution=0.01)
75 self.point_cloud_obs = Obstacle(point_cloud, origin=self.camera.origin)
76 self.planner.environment.add_obstacle(self.point_cloud_obs)
77
78 # Update the studio visualization of the point cloud
79 self.studio.set_camera_point_cloud(np.array(points).flatten().tolist())
80 return image
81
82 def go_home(self):
83 # Plan and execute a motion to move the robot arm to a "home" configuration
84 start = self.studio.get_joint_position()
85 motion_to_go_home = Motion(name='gohome', robot=self.robot, start=start, goal=[math.pi / 2, -math.pi / 2, 0, -math.pi / 2, 0, 0])
86 trajectory_to_go_home = self.planner.plan(motion_to_go_home)
87 self.studio.run_trajectory(trajectory_to_go_home)
88
89 def pick_up_object(self, pose: Frame):
90 # Clear any currently held item
91 self.robot.item = None
92
93 # Plan a motion to pick the object from the given pose
94 start = self.studio.get_joint_position(self.robot)
95 motion_to_pick = Motion(name='pick', robot=self.robot, start=start, goal=pose)
96 motion_to_pick.robot.item = None
97
98 # Find the closest object and carve it out from the point cloud to help with collision checking
99 o = self._find_closest_object(pose)
100 self.object_for_carving.origin = Frame(z=0.002) * o.origin
101 self.planner.environment.carve_point_cloud(self.point_cloud_obs, self.object_for_carving)
102 self.planner.environment.update_point_cloud(self.point_cloud_obs)
103 self.studio.set_camera_point_cloud(np.array(self.point_cloud_obs.collision.points).flatten().tolist())
104
105 # Add the arm's object obstacle to help with collision-free planning
106 self.planner.environment.add_obstacle(self.object_for_arm)
107 trajectory_to_pick = self.planner.plan(motion_to_pick)
108 self.studio.run_trajectory(trajectory_to_pick)
109
110 # Hide the original object visually and attach it to the arm
111 o.for_visual = False
112 self.studio.update_obstacle(o)
113 self._attach_object_to_arm()
114
115 def _find_closest_object(self, pose: Frame):
116 # Find the obstacle closest to the given pose
117 return min(self.obstacles, key=lambda o: pose.translational_distance(o.origin), default=None)
118
119 def _attach_object_to_arm(self):
120 # Attach the picked object to the robot's arm for the simulation
121 object_obs = self.object_for_arm
122 object_obs.name = 'object_item'
123 object_obs.origin = Frame(x=0.0, y=-0.069, z=0.015)
124 object_obs.for_visual = True
125 self.studio.set_item(object_obs)
126
127 def place_object(self, box_to_pack: Obstacle, slot):
128 # Plan and execute a motion to place the picked object into a box slot
129 start = self.studio.get_joint_position(self.robot)
130 place_loc = self.get_place_locations(box_to_pack, slot)
131 goal = place_loc * Frame(z=0.01) * self.place_rot_adjustment
132 goal_cart = CartesianWaypoint(position=goal, reference_config=self.reference_config_place)
133
134 motion_to_place = Motion(name='place', robot=self.robot, start=start, goal=goal_cart)
135 trajectory_to_place = self.planner.plan(motion_to_place)
136 self.studio.run_trajectory(trajectory_to_place)
137
138 # Update the scene to show the placed object
139 o = self._find_closest_object(self.robot.calculate_tcp(start))
140 o.for_visual = True
141 o.origin = goal * Frame(y=-0.069)
142 self.studio.update_obstacle(o)
143
144 # Release the object from the arm
145 self.robot.item = None
146 self.studio.set_item(None)
147
148 def detect_objects(self, image):
149 # Convert image to OpenCV format and detect objects by color (blue)
150 opencv_image = cv2.cvtColor(np.array(Image.fromarray(image.color)), cv2.COLOR_RGB2BGR)
151 hsv = cv2.cvtColor(opencv_image, cv2.COLOR_BGR2HSV)
152 lower_blue = np.array([100, 50, 50])
153 upper_blue = np.array([130, 255, 255])
154 mask = cv2.inRange(hsv, lower_blue, upper_blue)
155
156 # Find contours of detected objects
157 contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
158 rectangles = []
159 for contour in contours:
160 if cv2.contourArea(contour) > 100:
161 x, y, w, h = cv2.boundingRect(contour)
162 if 0.5 < float(w) / h < 2:
163 center_x = x + w / 2
164 center_y = y + h / 2
165 rectangles.append((int(center_x), int(center_y)))
166
167 # Deproject pixel coordinates to 3D points relative to the camera
168 points = []
169 for i, (x, y) in enumerate(rectangles):
170 # Draw detection markers on the debug image
171 if i == 0:
172 cv2.circle(opencv_image, (x, y), 5, (0, 0, 255), -1)
173 cv2.rectangle(opencv_image, (x - 40, y - 70), (x + 40, y + 50), (0, 255, 0), 2)
174
175 # Get the depth and compute 3D coordinates in the scene
176 depth = image.depth[y][x]
177 p3d = image.deproject(np.array([[y, x, depth]]))[0]
178 p3d = self.camera.origin * Frame.from_translation(p3d[1], p3d[0], p3d[2]) * Frame(x=-0.085, y=0.08) * Frame(c=math.pi)
179 points.append(p3d)
180
181 # Save the detection result image
182 cv2.imwrite('detected_objects.png', opencv_image)
183 color_image = ColorImage.load_from_file('detected_objects.png')
184 # Set image to the camera in Studio
185 encoded_image = color_image.encode()
186 self.studio.set_camera_image_encoded(encoded_image, camera=self.camera)
187
188 return points
189
190
191if __name__ == '__main__':
192 project_name = 'bin-picking-with-vision.jacobi-project'
193 vision_packer = VisionBinPicking(project_name)
194
195 img = vision_packer.take_snapshot()
196 detected_objects = vision_packer.detect_objects(img)
197 for j, p in enumerate(detected_objects):
198 vision_packer.pick_up_object(p)
199 box_index = int(np.floor(j / 4))
200 box_slot = j % 4
201 vision_packer.place_object(vision_packer.boxes_to_pack[box_index], box_slot)
202
203 vision_packer.go_home()