Bimanual Depalletizing¶
Robotic depalletizing is crucial in the logistics industry, enabling efficient use-cases like distribution or order fulfillment. Fast motion planning can significantly reduce cycle times and boost productivity. Jacobi’s software can plan bimanual motions, enabling simultaneous manipulation of items, optimizing throughput and minimizing cycle times. This project features three operational modes: Bimanual Mode, where both arms plan and execute pick-and-place actions simultaneously; Single-Arm Dynamic Mode, where one arm’s motion is planned first and the other follows while considering the first arm’s trajectory, with both arms executing their motions at the same time; and Single-Arm Interlock Mode, where one arm’s motion is planned while the other remains static, and the trajectories are executed sequentially.
Video
Application Code
1import time
2
3from pathlib import Path
4import yaml
5from jacobi import Trajectory, DynamicRobotTrajectory, Frame, Studio, Box, Obstacle, Planner, Motion, LinearSection
6from jacobi import BimanualMotion, MultiRobotLinearSection, MultiRobotPoint
7
8
9class BimanualDepalletizer:
10 """
11 This class supports three distinct planning modes, each dictating how the robot arms coordinate during pick-and-place operations:
12
13 1. Bimanual Mode ( self.mode = 'bimanual' ):
14 - Plans for both arms simultaneously to synchronously perform pick and place actions.
15 - Executes the planned trajectories for both arms simultaneously.
16
17 2. Single-Arm Dynamic Mode ( self.mode = 'dynamic' ):
18 - Plans the motion for a single arm, then plans the motion for the other arm while considering the first arm's trajectory.
19 - Executes the planned trajectories for both arms simultaneously.
20
21 3. Single-Arm Interlock Mode ( self.mode = 'interlock' ):
22 - Plans the motion for a single arm, then plans the motion for the other arm considering the first arm's static position.
23 - Executes the planned trajectories for both arms sequentially.
24
25 """
26
27 def __init__(self, mode='bimanual'):
28 self.mode = mode
29 self.planner = Planner.load_from_project_file('bimanual-depalletizing.jacobi-project')
30 self.studio = Studio()
31
32 self.pallet_left = self.planner.environment.get_obstacle('pallet_left').origin
33 self.pallet_right = self.planner.environment.get_obstacle('pallet_right').origin
34 self.box_left = Obstacle('box-left', Box(0.4, 0.2, 0.2), color='E1B471')
35 self.box_right = Obstacle('box-right', Box(0.4, 0.2, 0.2), color='E1B471')
36 self.box_pattern = self.load_pattern_from_file('pattern_box.yml', self.box_left.collision)
37
38 self.dualarm = self.planner.environment.get_robot('dualarm')
39
40 self.home = self.planner.environment.get_waypoint('home').position
41 self.place_pose = self.planner.environment.get_waypoint('place_pose').position
42
43 self.right_current_joint_position = self.home
44 self.left_current_joint_position = self.home
45 self.studio.set_joint_position(self.home, robot=self.dualarm.left)
46 self.studio.set_joint_position(self.home, robot=self.dualarm.right)
47 time.sleep(1)
48
49 @staticmethod
50 def load_pattern_from_file(path: Path, box: Box) -> list[list[Frame]]:
51 """Load a box pattern from a yaml file."""
52
53 with (Path(__file__).absolute().parent / path).open('r') as f:
54 data = yaml.safe_load(f)
55
56 def parse(p: dict, axis: str) -> float:
57 element = p.get(axis, 0.0)
58 if isinstance(element, str):
59 return eval(element, {'x': box.x, 'y': box.y, 'z': box.z, 'g': 0.01})
60 return element
61
62 def to_frame(p: dict) -> Frame:
63 return Frame(x=parse(p, 'x'), y=parse(p, 'y'), z=parse(p, 'z'), c=parse(p, 'c'))
64
65 return [[to_frame(box) for box in layer['boxes']] for layer in data['layers']]
66
67 def plan_cached(self, m: Motion) -> Trajectory:
68 cache_directory = Path('cache/depal')
69 cache_directory.mkdir(exist_ok=True, parents=True)
70
71 trajectory_path = cache_directory / f'{m.name}.json'
72 if trajectory_path.exists():
73 return Trajectory.from_json_file(trajectory_path)
74
75 trajectory = self.planner.plan(m)
76 trajectory.to_json_file(trajectory_path)
77 return trajectory
78
79 def set_item(self, box_to_set, robot):
80 box_as_item = box_to_set.with_origin(Frame(z=-box_to_set.collision.z / 2))
81 self.studio.set_item(box_as_item, robot)
82 robot.item = box_as_item
83 self.studio.remove_obstacle(box_to_set)
84 self.planner.environment.remove_obstacle(box_to_set)
85
86 def remove_item(self, robot):
87 self.studio.set_item(None, robot)
88 robot.item = None
89
90 def single_arm_interlock_pick_cycle(self, box_left, box_right):
91 # Left arm from place to pick, right arm from pick to place
92 pick = box_left.origin * Frame(z=box_left.collision.z / 2)
93 place = self.place_pose * box_right.origin.rotation
94
95 m1 = Motion(f'{box_left.name}-to-pick-interlock', self.dualarm.left, self.left_current_joint_position, pick)
96 m1.linear_retraction = LinearSection(offset=Frame(z=0.05))
97 m1.linear_approach = LinearSection(offset=Frame(z=0.05))
98 trajectoryl = self.plan_cached(m1)
99 self.studio.run_trajectory(trajectoryl, robot=self.dualarm.left)
100 self.left_current_joint_position = trajectoryl.positions[-1]
101 self.set_item(box_left, self.dualarm.left)
102
103 m2 = Motion(f'{box_right.name}-to-place-interlock', self.dualarm.right, self.right_current_joint_position, place)
104 m2.linear_retraction = LinearSection(offset=Frame(z=box_right.collision.z + 0.01))
105 m2.linear_approach = LinearSection(offset=Frame(z=0.05))
106 trajectoryr = self.plan_cached(m2)
107 self.studio.run_trajectory(trajectoryr, robot=self.dualarm.right)
108 self.right_current_joint_position = trajectoryr.positions[-1]
109 self.remove_item(self.dualarm.right)
110
111 # Left arm from pick to place, right arm from place to pick
112 pick = box_right.origin * Frame(z=box_right.collision.z / 2)
113 place = self.place_pose * box_left.origin.rotation
114
115 m1 = Motion(f'{box_right.name}-to-pick-interlock', self.dualarm.right, self.right_current_joint_position, pick)
116 m1.linear_retraction = LinearSection(offset=Frame(z=0.05))
117 m1.linear_approach = LinearSection(offset=Frame(z=0.05))
118 trajectoryr = self.plan_cached(m1)
119 self.studio.run_trajectory(trajectoryr, robot=self.dualarm.right)
120 self.right_current_joint_position = trajectoryr.positions[-1]
121 self.set_item(box_right, self.dualarm.right)
122
123 m2 = Motion(f'{box_left.name}-to-place-interlock', self.dualarm.left, self.left_current_joint_position, place)
124 m2.linear_retraction = LinearSection(offset=Frame(z=box_left.collision.z + 0.01))
125 m2.linear_approach = LinearSection(offset=Frame(z=0.05))
126 trajectoryl = self.plan_cached(m2)
127 self.studio.run_trajectory(trajectoryl, robot=self.dualarm.left)
128 self.left_current_joint_position = trajectoryl.positions[-1]
129 self.remove_item(self.dualarm.left)
130
131 def single_arm_dynamic_pick_cycle(self, box_left, box_right):
132 # Left arm from place to pick, right from pick to place
133 pick = box_left.origin * Frame(z=box_left.collision.z / 2)
134 place = self.place_pose * box_right.origin.rotation
135
136 m1 = Motion(f'{box_left.name}-to-pick-dynamic', self.dualarm.left, self.left_current_joint_position, pick)
137 m1.linear_retraction = LinearSection(offset=Frame(z=0.05))
138 m1.linear_approach = LinearSection(offset=Frame(z=0.05))
139 trajectoryl = self.plan_cached(m1)
140
141 self.planner.dynamic_robot_trajectories = [DynamicRobotTrajectory(trajectoryl, self.dualarm.left)]
142 m2 = Motion(f'{box_right.name}-to-place-dynamic', self.dualarm.right, self.right_current_joint_position, place)
143 m2.linear_retraction = LinearSection(offset=Frame(z=box_right.collision.z + 0.01))
144 m2.linear_approach = LinearSection(offset=Frame(z=0.05))
145 trajectoryr = self.plan_cached(m2)
146 self.planner.dynamic_robot_trajectories = []
147 self.studio.run_trajectories([(trajectoryl, self.dualarm.left), (trajectoryr, self.dualarm.right)])
148
149 self.left_current_joint_position = trajectoryl.positions[-1]
150 self.right_current_joint_position = trajectoryr.positions[-1]
151 self.set_item(box_left, self.dualarm.left)
152 self.remove_item(self.dualarm.right)
153
154 # Left arm from pick to place, right from place to pick
155 pick = box_right.origin * Frame(z=box_right.collision.z / 2)
156 place = self.place_pose * box_left.origin.rotation
157
158 m1 = Motion(f'{box_right.name}-to-pick-dynamic', self.dualarm.right, self.right_current_joint_position, pick)
159 m1.linear_retraction = LinearSection(offset=Frame(z=0.05))
160 m1.linear_approach = LinearSection(offset=Frame(z=0.05))
161 trajectoryr = self.plan_cached(m1)
162
163 self.planner.dynamic_robot_trajectories = [DynamicRobotTrajectory(trajectoryr, self.dualarm.right)]
164 m2 = Motion(f'{box_left.name}-to-place-dynamic', self.dualarm.left, self.left_current_joint_position, place)
165 m2.linear_retraction = LinearSection(offset=Frame(z=box_left.collision.z + 0.01))
166 m2.linear_approach = LinearSection(offset=Frame(z=0.05))
167 trajectoryl = self.plan_cached(m2)
168 self.planner.dynamic_robot_trajectories = []
169 self.studio.run_trajectories([(trajectoryl, self.dualarm.left), (trajectoryr, self.dualarm.right)])
170
171 self.left_current_joint_position = trajectoryl.positions[-1]
172 self.right_current_joint_position = trajectoryr.positions[-1]
173 self.set_item(box_right, self.dualarm.right)
174 self.remove_item(self.dualarm.left)
175
176 def bimanual_pick_cycle(self, box_left, box_right):
177 # Left from place to pick, right from pick to place
178 pick = box_left.origin * Frame(z=box_left.collision.z / 2)
179 place = self.place_pose * box_right.origin.rotation
180
181 start = MultiRobotPoint({
182 self.dualarm.left: self.left_current_joint_position,
183 self.dualarm.right: self.right_current_joint_position,
184 })
185 goal = MultiRobotPoint({
186 self.dualarm.left: pick,
187 self.dualarm.right: place,
188 })
189 m = BimanualMotion(f'left-{box_left.name}-right-place', self.dualarm, start, goal)
190 m.linear_retraction = MultiRobotLinearSection({
191 self.dualarm.left: LinearSection(offset=Frame(z=0.05)),
192 self.dualarm.right: LinearSection(offset=Frame(z=box_right.collision.z + 0.01)),
193 })
194 m.linear_approach = MultiRobotLinearSection({
195 self.dualarm.left: LinearSection(offset=Frame(z=0.05)),
196 self.dualarm.right: LinearSection(offset=Frame(z=0.05)),
197 })
198
199 trajectory = self.plan_cached(m)
200 self.studio.run_trajectory(trajectory, robot=self.dualarm)
201 self.left_current_joint_position = trajectory.positions[-1][0:6]
202 self.right_current_joint_position = trajectory.positions[-1][6:]
203 self.set_item(box_left, self.dualarm.left)
204 self.remove_item(self.dualarm.right)
205
206 # Left from pick to place, right from place to pick
207 pick = box_right.origin * Frame(z=box_right.collision.z / 2)
208 place = self.place_pose * box_left.origin.rotation
209
210 start = MultiRobotPoint({
211 self.dualarm.left: self.left_current_joint_position,
212 self.dualarm.right: self.right_current_joint_position,
213 })
214 goal = MultiRobotPoint({
215 self.dualarm.left: place,
216 self.dualarm.right: pick,
217 })
218 m = BimanualMotion(f'right-{box_right.name}-left-place', self.dualarm, start, goal)
219 m.linear_retraction = MultiRobotLinearSection({
220 self.dualarm.left: LinearSection(offset=Frame(z=box_left.collision.z + 0.01)),
221 self.dualarm.right: LinearSection(offset=Frame(z=0.05)),
222 })
223 m.linear_approach = MultiRobotLinearSection({
224 self.dualarm.left: LinearSection(offset=Frame(z=0.05)),
225 self.dualarm.right: LinearSection(offset=Frame(z=0.05)),
226 })
227
228 trajectory = self.plan_cached(m)
229 self.studio.run_trajectory(trajectory, robot=self.dualarm)
230 self.left_current_joint_position = trajectory.positions[-1][0:6]
231 self.right_current_joint_position = trajectory.positions[-1][6:]
232 self.set_item(box_right, self.dualarm.right)
233 self.remove_item(self.dualarm.left)
234
235 def load_pattern_onto_pallet(self, pattern, pallet: Frame, box: Obstacle):
236 obstacles = []
237
238 for i_layer, layer in enumerate(pattern):
239 for i_box, pose in enumerate(layer):
240 b = box.with_origin(pallet * pose)
241 b.name = f'{b.name}-{i_layer + 1}-{i_box + 1}'
242 self.studio.add_obstacle(b)
243 b_ = self.planner.environment.add_obstacle(b)
244 obstacles.append(b_)
245
246 return obstacles
247
248 def pick_cycle(self, box_left, box_right):
249 if self.mode == 'bimanual':
250 self.bimanual_pick_cycle(box_left, box_right)
251 elif self.mode == 'dynamic':
252 self.single_arm_dynamic_pick_cycle(box_left, box_right)
253 elif self.mode == 'interlock':
254 self.single_arm_interlock_pick_cycle(box_left, box_right)
255
256 def run(self):
257 # Load the box pattern onto the pallets
258 box_obstacles_left = self.load_pattern_onto_pallet(self.box_pattern, self.pallet_left, self.box_left)
259 box_obstacles_right = self.load_pattern_onto_pallet(self.box_pattern, self.pallet_right, self.box_right)
260
261 # Pick all boxes from the pallets
262 for box_l, box_r in zip(reversed(box_obstacles_left), reversed(box_obstacles_right)):
263 self.pick_cycle(box_l, box_r)
264
265 # Finish the last box and return to home for both arms
266 m_left = Motion('left-to-home', self.dualarm.left, self.left_current_joint_position, self.home)
267 t = self.plan_cached(m_left)
268 self.studio.run_trajectory(t, robot=self.dualarm.left)
269
270 m_right = Motion('right-place-last-box', self.dualarm.right, self.right_current_joint_position, self.place_pose)
271 t = self.plan_cached(m_right)
272 self.studio.run_trajectory(t, robot=self.dualarm.right)
273 self.right_current_joint_position = t.positions[-1]
274 self.remove_item(self.dualarm.right)
275
276 m_right = Motion('right-to-home', self.dualarm.right, self.right_current_joint_position, self.home)
277 t = self.plan_cached(m_right)
278 self.studio.run_trajectory(t, robot=self.dualarm.right)
279
280
281if __name__ == '__main__':
282 application = BimanualDepalletizer(mode='bimanual')
283 application.run()