Move¶
from time import sleep
from jacobi import Planner
from jacobi.drivers import Result, YaskawaDriver
from jacobi.robots import YaskawaHC10
if __name__ == '__main__':
robot = YaskawaHC10()
robot.set_speed(0.1)
planner = Planner(robot, 0.025)
driver = YaskawaDriver(planner)
result_enable = driver.enable()
if result_enable != Result.Success:
print('Failed to enable robot!')
exit()
# Option A: Use Home position
goal_pose0 = [0.0, 0.0, 0.0, 0.0, -1.570796, 0.0]
# # Option B: Use current position
# goal_pose0 = driver.current_joint_position
# print('Start robot position:', goal_pose0)
goal_pose1 = list(goal_pose0)
goal_pose1[0] += 0.2
goal_pose1[5] -= 0.2
goal_pose2 = list(goal_pose1)
goal_pose2[1] += 0.4
goal_pose2[2] += 0.2
goal_pose2[4] += 0.2
# Move to: Pose0
result0 = driver.move_to(goal_pose0)
print(f'Move to home result: {result0}')
# Move to: Pose1
result1 = driver.move_to(goal_pose1)
print(f'Move to pose1 result: {result1}')
# Move asynchronously to: Pose2
future_result2 = driver.move_to_async(goal_pose2)
# Abort with Stop
sleep(1)
result_stop = driver.stop()
print(f'Stop robot: {result_stop}')
print(f'Robot position after stop: {driver.current_joint_position}')
# Move to: Pose2 - Get Result
result2 = future_result2.get()
print(f'Move to pose2 result: {result2}')
# Move to: Pose0
result3 = driver.move_to(goal_pose0)
print(f'Move to home result: {result3}')
driver.disable()
#include <iostream>
#include <jacobi/planner.hpp>
#include <jacobi/drivers/yaskawa.hpp>
#include <jacobi/robots/yaskawa_hc10.hpp>
#include <jacobi/utils/vector.hpp> // E.g. for join method to print vectors easily
using namespace jacobi;
using namespace jacobi::drivers;
using namespace jacobi::robots;
int main() {
auto robot = std::make_shared<YaskawaHC10>();
robot->set_speed(0.1);
auto planner = std::make_shared<Planner>(robot, 0.025);
auto driver = std::make_shared<YaskawaDriver>(planner);
const auto result_enable = driver->enable();
if (result_enable != drivers::Result::Success) {
std::cout << "Failed to enable robot!" << std::endl;
std::exit(1);
}
// Option A: Use Home position
Config goal_pose0 {0.0, 0.0, 0.0, 0.0, -M_PI_2, 0.0};
// // Option B: Use current position
// auto goal_pose0 = driver->get_current_joint_position();
Config goal_pose1(goal_pose0);
goal_pose1[0] += 0.2;
goal_pose1[5] -= 0.2;
Config goal_pose2(goal_pose1);
goal_pose2[1] += 0.4;
goal_pose2[2] += 0.2;
goal_pose2[4] += 0.2;
// Move to: Pose0
const auto result0 = driver->move_to(goal_pose0);
std::cout << "Move to home result: " << result0.get_description() << std::endl;
// Move to: Pose1
const auto result1 = driver->move_to(goal_pose1);
std::cout << "Move to pose1 result: " << result1.get_description() << std::endl;
// Move asynchronously to: Pose2
const auto future_result2 = driver->move_to_async(goal_pose2);
// Abort with Stop
std::this_thread::sleep_for(std::chrono::milliseconds(1000));
const auto result_stop = driver->stop();
std::cout << "Stop robot: " << result_stop.get_description() << std::endl;
std::cout << "Robot position after stop: " << join(driver->get_current_joint_position()) << std::endl;
// Move to: Pose2 - Get Result
const auto result2 = future_result2.get();
std::cout << "Move to pose2 result: " << result2.get_description() << std::endl;
// Move to: Pose0
const auto result3 = driver->move_to(goal_pose0);
std::cout << "Move to home result: " << result3.get_description() << std::endl;
driver->disable();
}